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Abstract 
The Voronoi method of constructing polyhedra about all 
atoms in a given crystal structure is extended to provide 
a general, quantitative and concise means of discrim- 
inating crystal structures from one another. Although 
applicable to all crystal structural types, the methodology 
is developed here by reference to binary non-molecular 
inorganic systems, AmBn, corresponding mainly to ionic 
crystals and intermetallic compounds. Consideration is 
given to the geometrical forms of the Voronoi polyhe- 
dra, with AB2 compounds singled out for illustrative 
purposes. Two methods are proposed for summariz- 
ing structural geometry: (i) the use of representative 
points for elements of Voronoi polyhedra (i.e. cor- 
ners, edges and faces) and relating these to space-group 
symmetry; (ii) calculation of the ratio of the volumes 
of Voronoi polyhedra, vV /v  v. Topological structural 
properties (i.e. numbers of A...A, A.. .B and B..-B 
pairwise interactions), by comparison, may be quantified 
by the indices IAA, IAS, ISA and 188, whose meanings 
are defined and elucidated. By adopting statistically 
disordered structures as reference points, indices I'AA, 
I'AS, I~A and I~8 are defined, which lead to the gen- 
eration of two-dimensional topological structure dia- 
grams with I ~  and I~8 as axes. Altematively, geo- 
metrical-topological diagrams may be generated, with 
vV/vV8 and I'AA -- I'88 as axes. The straightforward modi- 
fications required for a chemical-geometrical rather than 
a topological-geometrical analysis are also described. It 
is anticipated that the technique will find widespread 
application in solid-state chemistry and materials sci- 
ence. 

1. Introduction 

1.1. Historical perspective 
Polyhedra, and their relevance to our understanding of 

the natural world, have been a matter of fascination and 
speculation for over 2000 years. It was Plato who first 
supposed that the basic elements of earth, air, fire and 
water had the forms of regular polyhedra, whose con- 
stituent triangles were regrouped in transitions between 
the four elements.* Kepler, in the early seventeenth cen- 
tury, proposed that crystals could be regarded as aggre- 
gations of space-filling polyhedra, which, in turn, could 

* Plato (427-347 BC), Timaeus dialogue, Sections 19-22. 

be obtained by uniformly compressing arrays of spheres 
(Kepler, 1611). Later work by Hatiy in the nineteenth 
century developed the view that crystals were arrays of 
elementary blocks, which could be grouped into shapes 
that filled space (Hatiy, 1822). The nature of possible 
space-filling polyhedra was subsequently addressed in 
1885 by Fedorov, who identified the cube, hexagonal 
prism, rhombic dodecahedron, elongated dodecahedron 
and truncated octahedron as the five polyhedra which 
could fill space when positioned face-to-face in parallel 
arrays (Senechal, 1990). 

Quite independently of these speculations concern- 
ing crystals, the mathematician Dirichlet (1850) had 
developed a geometrical construction to assist in the 
reduction of quadratic forms, a theme which was later 
taken up by Voronoi (1908). The construction of Dirich- 
let domains/Voronoi polyhedra in crystallography was 
independently taken up by Niggli (1927, 1928), who 
considered two-dimensional juxtapositions of symmetry 
elements and circles, and described the Wirkungsbere- 
ich of a given point as that region of space uniquely 
belonging to it. He further defined a method whereby 
convex (Voronoi) polyhedra could be constructed, one 
for each point. This was based on the construction of 
planes bisecting at fight angles the straight lines joining 
the point of interest with neighbouring equivalent points. 
This construction can also be used to divide a lattice 
into primitive cells centred about the lattice points, 
as an alternative to the conventional parallelipipedal 
unit cells. These cells are given various names, i.e. 
Dirichlet regions, Voronoi polyhedra, Wirkungsbereiche, 
Wigner-Seitz cells, or in reciprocal space, first Brillouin 
zones. 

Frank & Kasper (1958) were the first to apply the 
concept of the Voronoi polyhedron to point atoms, 
which were symmetrically inequivalent in a crystal struc- 
ture. By exploiting the correspondence between faces of 
atomic Voronoi polyhedra and interactions with coordi- 
nating atoms, they argued that the Voronoi polyhedron 
of an atom could be used to determine its coordination 
number unambiguously. Hoppe (1970) developed this 
approach by extending the Voronoi construction for 
points to spheres of finite and unequal radii, these cor- 
responding more closely to atoms or ions. He proposed 
that the planes of such Voronoi polyhedra should still 
be perpendicular to the lines joining the centres of the 
spheres, but that these lines be divided by the planes 
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in proportion to the two relevant spherical radii, ra and 
re. The disadvantages of this construction were subse- 
quently pointed out by Fischer, Koch & Hellner (1971), 
who demonstrated, in a two-dimensional projection, that 
regions of space could appear which were not uniquely 
assigned to a particular Wirkungsbereich (Fig. la). Thus, 
the requirement of space-filling could not necessarily 
be fulfilled. Consequently, another method of construct- 
ing Wirkungsbereiche was proposed by them, based on 
Potenzebenen ('radical planes'). In this connection, any 
point lying on a such a plane is equidistant from both 
defining spheres along tangents to those spheres (Fig. 
lb). Significantly, this construction permits the division 
of space without areas XYZ, as in Fig. 1 (a). Although any 
radical plane does lie closer to the centre of the smaller 
sphere than to that of the larger sphere, this construction 
lacks the intuitive directness of Hoppe's method (Fig. 
la). 

The Voronoi theme was taken up again by Carter 
(1978), who sought to refine the approach of Frank and 
Kasper in defining coordination numbers. Despite the 
rigour of the Frank-Kasper definition of coordination 
number, it overlooked the inequivalence of the different 
faces of a given Voronoi polyhedron. Carter proposed a 
means of dealing with this inequivalence, which resulted 
in the calculation of non-integral, effective coordination 
numbers. His methodology was formulated in general 
terms, whereby 

N N 

1 / C N = ( Z ~ ) / ( Z s i )  2. (1) 
1 1 

Here CN is the calculated coordination number of a 
given atom, si a measure of bond formation with its ith 
neighbour and N the number of neighbours, i.e. faces 
of its polyhedral atomic volume (PAV) cell. PAV cells 
differed both from conventional Voronoi polyhedra and 

(a) (b) 

(c) (d) 

Fig. 1. Two-dimensional analogies for the construction of Voronoi 
polyhedra: (a) taking atomic radii into account by Hoppe's method; 
(b) taking atomic radii into account by the method of Fischer and 
Koch; (c) taking atomic radii into account by Carter's method 
(PAV cells); (d) disregarding atomic radii (unmodified Voronoi 
construction). 

from the constructions of Hoppe and Fischer, and Koch 
and Hellner, in that planes perpendicular to lines linking 
atom centres were placed midway between spherical 
atomic surfaces (Fig. l c). Two measures of face valences 
si were considered, first the area of the ith face of the 
PAV and secondly the volume of the pyramid formed 
by the ith polyhedral face with the central atom itself 
as the apex. Mention was also made of a third possible 
basis for si values, based on earlier work by Mackay 
(1972) on straightforward Voronoi polyhedra (i.e. faces 
bisecting lines between atomic centres, Fig. l d), rather 
than PAV cells. Here, the method rested on a calculation 
of the solid angles subtended at an atom by all faces of 
its Voronoi polyhedron. 

Although the PAV approach offers a more direct 
method of partitioning space for atoms of unequal radii 
than the approaches of Fischer or Hoppe, it suffers from 
the same potential drawback as Hoppe's construction, in 
that regions of space such as XYZ (Fig. l c) can arise, 
which are not associated with any particular vertex.* 

Later work by Fischer & Koch (1979) was concerned 
with an investigation of packing in organic molecular 
crystals by the use of Dirichlet domains. With the 
assumption of idealized covalent radii for atoms, Dirich- 
let domains enclosed by radical planes were constructed. 
These workers proceeded to calculate domain volumes 
and coordination numbers (i.e. numbers of faces of 
domains), disregarding those faces of area less than 2% 
of the total facial area. Molecular packing polyhedra 
were subsequently constructed, defined as the juxtapo- 
sition of atomic Dirichlet domains, with shared faces 
indicating coordination of one molecule by another. 
Thus, molecular coordination numbers could be cal- 
culated by a method which did not depend explicitly 
on interaction distances between atoms. Transferable 
volume increments for atoms in organic molecules were 
also tabulated (Koch & Fischer, 1980). 

More recently, the potential importance of Voronoi 
polyhedra in intermetallic compounds has been indicated 
by Nesper (1991), who discussed the possibility that 
electrons in semi-conducting or intermetallic compounds 
are concentrated at the face centres or vertices of these 
polyhedra. He stated further that the detection of voids 
(i.e. vertices of Voronoi polyhedra) and an analysis of 
their structural meaning would be a significant contri- 
bution to the development of a 'comprehensive general 
structural chemistry'. 

1.2. Scope of the current article 

This article is concerned with extending the Voronoi 
analysis, both geometrically and topologically. In so 

* A comparison of Figs. l(a) and (c) shows that the extent of the 
problem with indeterminate regions XYZ is less for PAV cells than 
for Hoppe's method. This suggests that, provided a suitable means of 
dealing with such regions has been defined, the PAV is likely to be of 
widespread applicability. Although well defined mathematically, the 
radical plane approach (Fig. Ib) gives rise to polyhedral boundaries 
with positions too weakly dependent on the radii of the atoms. 
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doing, it has two aims: (i) to permit a quantitative 
comparison of different crystal structural types; (ii) to 
articulate the influence of stoichiometric and geometrical 
factors on crystal structure. The methodology is intro- 
duced in a stepwise manner, proceeding first from the 
concept of complementary Voronoi polyhedra. Although 
these polyhedra contain a wealth of structural informa- 
tion, a means is required of conveying its significance 
concisely. Two strategies are proposed for doing this, 
the first based on geometry alone, whereby the elements 
of the Voronoi polyhedra of a structure (i.e. vertices, 
edges and faces) are correlated with its space-group 
symmetry. The second strategy is to develop a topo- 
logical framework, which is based on a consideration of 
whether faces shared between adjacent Voronoi polyhe- 
dra are associated with homo- or heteroatomic pairwise 
interactions. 

These topological factors are expressed in terms of 
face-interaction indices, which are calculated, by way of 
an example, for known structural types of stoichiometry 
AB2 amongst ionic crystals and intermetallic compounds. 
Four face-interaction indices can be calculated for each 
structure, with two independent indices, permitting the 
construction of two-dimensional structure diagrams for 
the direct comparison of different structural types. These 
topological indices can also be combined with geomet- 
rical information concerning the sizes of atoms A and B, 
expressed in terms of the ratio of the volumes of Voronoi 
polyhedra, VV/V v. 

The anticipated developments in the Voronoi-based 
methodology are subsequently discussed, in particular 
with regard to how the topological framework may be 

made more sensitive to the chemistry of the interactions 
between neighbouring atoms. 

All attributes of the Voronoi polyhedra have been 
calculated by means of a computer program developed 
specifically for this purpose, as described in Appendix B. 

2. The concept of complementary Voronoi polyhedra 

The simplest chemical systems correspond to elements 
for which the structures are best distinguished by com- 
paring their Voronoi polyhedra, as in Table 1. Here 
the structures are classified in terms of representative 
elements (sometimes not in their common polymorphs) 
and the appropriate Pearson symbols. Polyhedral char- 
acteristics are described by the numbers of corners C, 
faces F and edges E, denoted by CIFIE. The distribu- 
tion of the numbers of vertices in the F faces is also 
given. For example, the notation 24114136 6[6] 4[5] 4[4] 
denotes a polyhedron with 24 vertices, 14 faces and 36 
edges. Six faces are hexagonal, four pentagonal and four 
quadrilateral. 

The first 12 structures [Po(cP1) to Sn(tl4)] are charac- 
terized by only one type of Voronoi polyhedron, which 
fills space by itself. These 12 polyhedra are shown in Fig. 
2, with each polyhedron identified by the column headed 
'Fig.' in Table 1. Three common polyhedral types are 
found: the cube, the rhombic dodecahedron and the 
truncated octahedron (Figs. 2a, d and h, respectively)• 
The other nine structures in this table are composed 
of two or more different types of Voronoi polyhedron. 
In view of their space-filling properties, the polyhedra 
in a particular structure could be described as comple- 

(a) (b) (c) (d) 

\ // / ' , ( _ ~  

(e) (f) (g) (h) 

(0 (~3 (k) (0 

Fig. 2. Self-complementary Voronoi 
polyhedra of the elemental crystal 
structures in Table 1. 
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Table 1. Voronoi polyhedra in elemental crystal structures 

CIFIE 
816112 
12112122 
14112]24 
14112124 
15110123 
16116130 
18112128 
24114136 
24114136 
28116142 
30117145 
32118148 
18111127 
20115133 
16110124 
22113133 
24115137 
25115138 
20112130 
22113133 
24114136 
26115139 
26115139 
20112130 
22114134 
20112130 
24114136 
24114136 
28116142 
20112130 
28116142 
20 12130 
24 14]36 
28 16142 
20 12130 
20 12130 
26 15139 
27 16141 
28 16142 
32 18148 

Faces Element Pearson symbol MDF code 

6[4] Po cPl 45210 
8[4] 4[3] Ga ci12 51531 
12 [4] Mg hP2 38613 
1214] Cu cF4 22855 
2[6] 2[5] 6[4] Ga oC4 50503 
4[6] 1213] C cF8 51586 
4[6] 8[4] In tI2 35708 
8[6] 6[4] W ci2 49520 
6[6] 4[5] 4[4] Ga mC4 30010 
1 [10] 7[6] 8[4] Ga oC8 30018 
3110] 2[6] 1214] Si ci16 51534 
4110] 4[6] 2[4] 8[3] Sn tI4 48800 
3[8] 2[6] 6[3] C hH4 12896 
3[8] 6[4] 6[3] 
2[6] 4[5] 4[4] Ga hR22 51424 
2[7] 2[6] 4151 5[4] 
2[7] 8[5] 5[4] 
117l 3[6] 715l 4[4] 
1215] Pu mC34 49965 
4[6] 6[5] 3[4] 
4[6] 8[5] 2[4] 
6[6] 6[5] 3[4] 
4[6] 1015] 114] 
1215] Mn cP20 38902 
1215] 2[4] 
516] 2[5] 5[4] Pu mPl6 49726 
8[6] 6[4] 
6[6] 4[5] 4[4] 
9[6] 2[5] 5[4] 
5[6] 2[5] 5[4] Np oP8 50082 
7[6] 6[5] 3[4] 
1215] Mn ci58 51558 
3[6] 1015] 114] 
4[6] 1215] 
117l 3[6] 3[5] 514] Ga oC40 50524 
118] 117] 2[6] 3[5] 3[4] 2[3] 
118] 4[7] 4[5] 4[4] 2[3] 
118] 7[6] 2[5.] 4[4] 2[3] 
2110] 2[8] 2[6] 6[4] 4[3] Ge tP12 52322 
3110] 118] 2[6] 115] 6[4] 3[3] 

Fig. Reference 

2(a) (1) 
2(b) (2) 
2(c) (3) 
2(d) (4) 
2(e) (5) 
2(f) (6) 
2(g) (7) 
2(h) (8) 
2(i) (9) 
2(j) (10) 
2(k) ( 11 ) 
2(l) (12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

References (in CODEN form): (1) JINCAO 28 1837 1966; (2) JCPSA6 68 1221 1978; (3) AMETAR 7 769 1959; (4) JMTSAS 23 757 1988; 
(5) BUFCAE 84 260 1961; (6) JACGAR 8 457 1975; (7) PSSBBD 107B 245 1981; (8) JAPIAU 42 3288 1971; (9) ACBCAR B25 995 1969; 
(10) ZKKKAJ 117 293 1962; (11) ACCRA9 17 752 1964: (12) PSSBBD 107B 245 1981; (13) JCFTBS 72 446 1976: (14) ACBCAR 29B 367 
1973; (15) ACCRA9 16 369 1963; (16) ACBCAR 34B 3573 1978: (17) ACCRA 9 16 777 1963: (18) ACCRA9 5 660 1952: (19) PRLAAZ 
l15A 456 1927; (20) ACBCAR 28B 1974 1972; (21) SCIEAS 139 340 1963. 

mentary. For example, in the Mn(cP20) structure, the 
20112130 and 22114134 polyhedra are complementary.  

This concept of complementary Voronoi polyhedra is 
also applicable to non-molecular  compounds, since, in 
the majority of structures, each ion type has a distinct 
polyhedral type of  its own. In order to establish whether 
the approach of complementary polyhedra could provide 
a concise framework for comparing alternative struc- 
tures, 288 different structural types have been examined. 
These types were taken from the compilat ion of Pettifor 
(1986), with crystallographic data for each structural 
type taken either from the Metals Data File (MDF) or 
the Inorganic Crystal Structure Database (ICSD). Since 
each structural type is named after a particular parent 
composition, e.g. MgCu2-type, CaF2-type, the data anal- 

ysed corresponded to those of the parent composit ion 
itself. The analysis encompassed the following families 
of binary compounds: 49 AB; 4 A3BT; 10 ABs; 23 A2B3; 
10 A2Bs; 8 AB6; 18 A3B4; 42 AB3; 3 A2BIT; 7A3Bs; 2 
A6B23; 2 ABI1; 85 AB2; 20 ABa; 3AB12; 2 ABr3. 

In summary, 321 different Voronoi polyhedra were 
identified, this making a concise overview difficult. The 
polyhedron with the highest number of vertices, 42, was 
found for zinc ions in the ZnP2 structure (42123163 1112] 
2111] 119] 2[8] 2[6] 2[5] 6[4] 7[3]). The polyhedron 
with the least number of vertices corresponded to the 
octahedron (618112 813]), which was found in the CaF2, 
ThH2 and Hg4Pt structure types. Whereas the polyhedra 
which are complementary to the octahedra are identical 
in the CaF2 and ThH2 structures (16110124 6[6] 413]), 
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the Hg4Pt structure has complementary 1218118 6[5] 
2[3] polyhedra. This is a direct consequence of the 
AB4, rather than AB2 stoichiometry. The most frequently 
occurring Voronoi polyhedron is the truncated octa- 
hedron (24114136 8[6] 614]), which arises in 37 out 
of the 288 structures, with varying degrees of distor- 
tion. In the following 19 structures this polyhedron is 
self-complementary: CsC1, NiO, HgMn, AuCu, AuCd, 
NaTI, SET1, CuTi, Ti3Cu4, A13Os2, TizPd3,Ti3Pd5, CaC2, 
CdzCe, AuzV, MoSi2, CuTi3, BiF3 and MoNi4. In the 
remaining 18 structures it is found with a range of 
complementary Voronoi polyhedra.* 

Although the identification of complementary Voronoi 
polyhedra is a logical way to proceed, the sheer number 
of different polyhedral types makes this method too 
cumbersome for a direct and meaningful comparison of 
different crystal structures. This is not surprising, since 
the geometrical forms of the Voronoi polyhedra within 
just one unit cell, together with the requirement of space- 
filling, determine the complete crystal structure uniquely. 
A means is required for systematizing this information, 
either by relating polyhedral elements to space-group 
symmetry or by developing a topological classification 
of structures from their Voronoi polyhedra. These two 
approaches are now considered in turn. 

3. Relating Voronoi polyhedral elements to space- 
group symmetry 

Of the three types of Voronoi polyhedral elements, 
corners, edges and faces, it is clear that the coordinates of 
the corners of Voronoi polyhedra [xv, Yv, zv], as points in 
space, are governed by the symmetry of the space group. 
[xv, yv, zv] values for the MgCu2 structure are quoted in 
Table 6 in Appendix C, with the 136 vertices in the unit 
cell occupying special positions (96g), (32e) and (8b). 
By representing Voronoi edges and faces also as points, 
their numbers and coordinates can also be shown to be 
governed by space-group symmetry. 

If a Voronoi edge links two vertices of inequivalent 
point symmetry, all intermediate points along that edge 
will have the same point symmetry as one another. This 
is because the presence of inequivalent points at both 
ends of the edge precludes the existence at the edge 
midpoint of a centre of symmetry, or alternatively a 
mirror plane or rotation axis perpendicular to the edge 
direction. If, however, the two vertices have equivalent 
point symmetry, the point symmetry of the edge mid- 
point may differ from the point symmetry at all other 
intermediate points along the edge. Thus, if a unique 
representative point for a Voronoi edge is required, its 
midpoint must be taken. Only a point with the symmetry 

* The results of the analysis have been deposited with the IUCr 
(Reference: AB0351). Copies may be obtained through The Managing 
Editor, International Union of Crystallography, 5 Abbey Square, 
Chester CH! 2HU, England. 

of the midpoint will, in all cases, be generated with 
the same frequency in the unit cell as the edge-type it 
represents. 

Similar considerations apply to Voronoi faces, the 
perpendiculars of which join two atoms. If these two 
atoms have different types, any point on the face- 
perpendicular will be generated with the same frequency 
as the perpendicular itself. If, however, the two atoms are 
identical, only the midpoint of the face-perpendicular is 
the representative point for the face. These requirements 
are satisfied, in general, by adopting as the representative 
point of a Voronoi face that point on the line joining 
the two atoms which is equidistant from the surfaces of 
both atom spheres. This definition, expressed in terms 
of distances from atomic surfaces, permits a generaliza- 
tion to PAV cells and not merely conventional Voronoi 
polyhedra. Wherever the two atoms are identical, the 
representative point is coincident with the midpoint of 
the line connecting atomic centres. 

A justification of the above arguments is to be found 
in Appendix A. 

4. A topological classification of crystal structures 

4.1. Definition of face-interaction indices 
If a discrimination between alternative structural types 

is sought on chemical grounds, an appropriate method 
rests on a consideration of how the valences (or bonding 
electrons) of the atoms are distributed over nearest- 
neighbour interactions. In simple cases, it may be argued 
that such nearest-neighbour interactions represent chem- 
ical bonds. However, more generally, some kind of 
weighting scheme is required to differentiate between 
different nearest-neighbour interaction strengths. 

The choice of atomic valences is not straightforward, 
since a knowledge is required of numbers and orbital 
assignations of the electrons which participate in bond- 
ing interactions. A generalized chemical approach to 
analysing crystal structures would require an analysis 
of these atomic interactions, which, in binary com- 
pounds, AmBn, correspond to A...A, A.. .B and B . . .B  
interactions. According to such an approach, the atoms 
may be envisaged as acting as valence sources, with 
their valence distributed over their interactions (or, more 
loosely, bonds). In terms of Voronoi polyhedra, the 
problem is to identify how the forms of the polyhedra 
determine the distribution of electronic charge over poly- 
hedral faces, which correspond to pairwise interactions. 
To tackle this problem, use may be made of geometrical 
attributes such as facial areas, polyhedral volume incre- 
ments due to faces, solid angles subtended by faces at 
the atoms at the centres of the polyhedra or distances 
between atoms and their respective polyhedral faces. 
Alternatively, a valence-interaction length relationship 
could be used, arising from the use of appropriate bond- 
valence parameters (Brown & Altermatt, 1985; Brese & 
O' Keeffe, 1991; O' Keeffe & Brese, 1992). 
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For each of these possible methods, valence fractions 
iAA and iAe Can be derived for A-atom polyhedra, to 
represent the proportions of A-atom valence associated 
with A - A  and A - B  interactions, respectively. Likewise, 
valence fractions iBa and iee will represent, for B-atom 
polyhedra, the proportions of B-atom valence associ- 
ated with B - A  and B - B  interactions, respectively. Thus, 
iAA + iAB = 1 and ieA +iee  = 1. 

Still proceeding generally, indices Iaa, Iae, leA and 
lee may be defined by summing the corresponding i 
indices over all polyhedra in the unit cell. Thus, 

IAA = ZmiAa ; Iae = ZmiAe. (2) 

Similarly 

It follows that 

lea = ZnieA ; Ien = ZniBn. (3) 

IAA + IAe = Zm; leA + lee = Zn. (4) 

IAA , lAB , IBA and lee are termed face-interaction indices. 

4.2. Method o f  calculation o f  face-interaction indices 

In accordance with (2) and (3), the calculation of 
face-interaction indices IAA, IAe, leA and lee requires 
a knowledge of polyhedral valence fractions iAA, iae, 
ieA and iee, respectively. Values of these will depend 
on the method used to evaluate the valence fractions 
of polyhedral faces, as discussed in (i) above. Merely 
in order to introduce the methodology, the simplest 
approach is adopted here. According to this, all faces of 
a given Voronoi polyhedron are assigned equal valence 
fractions, regardless of their different characteristics. 
Adopting the notation that Saa represents the valence 
fraction of an A-polyhedral face which is shared with 
another A polyhedron and sae the valence fraction of 
an A-polyhedral face shared with a B polyhedron, this 
simple approach states that SAA = Sze = 1/FA. Likewise 
for the valence fractions of B polyhedra, SeA = see = 
1/Fe, where Fa and Fe represent the numbers of faces 
in polyhedra A and B, respectively. 

It is to be noted that face-interaction indices, as 
defined by this simple method, are directly related to 
the number of interactions in the unit cell. With respect 
to A - A  interactions, 

IAA = ZmiAA "- NZAA (2/FA). (5) 

T h u s ,  IAA may be derived either by multiplying iAA 

by the number of A ions in the unit cell or through 
multiplying the number of A - A  interactions in the unit 
cell, N~AA, by the net valence fraction per A - A  interaction, 
2/FA. Each A - A  interaction valence fraction is made up 
of a contribution of 1/FA from both polyhedra which 
share a face perpendicular to that interaction. Similarly, 
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lee = Zmiee = N/ee(2/Fe) (6) 

and, with respect to heteroatomic interactions, 

Iae - Zmiae = NiAe(I/FA); leA - ZnieA - Niea(l/Fe). (7) 

Example calculations of i, I and N' values are to 
be found in Appendix C2, where the simple method 
of distributing valence fractions equally over faces is 
followed. It is intended to give a treatment of the 
calculation of i and I indices by more refined methods in 
later articles. These will take the geometrical attributes 
of Voronoi polyhedra into account, either directly [as 
described in (i) above and in Appendix B] or indirectly, 
by means of a bond-valence type of approach. 

4.3. Definition and calculation o f  intrinsic face-  
interaction indices 

Regardless of the method of calculation of I indices, 
it is desirable to be able to compensate for the effects of 
stoichiometry on their values. For example, in any AB2 
structure it is expected that IBB > IAA, since there are 
twice as many B atoms as A atoms. A method is now 
proposed for deriving intrinsic face-interaction indices, 
in which the weighting influence of stoichiometry has 
been removed. 

For any given crystal structure a reference structure 
can be adopted, whereby each atomic position is occu- 
pied not by a single atom (as in the crystal structure 
itself), but by a statistical combination of all atom types 
in the structure in their stoichiometric proportions. With 
reference to a binary compound AraB,,, each statistical 
atom of this kind, denoted X for the present, will 
have i×A -" m/(m + n) and ixe = n/(m + n), with the second 
suffix referring either to an A or a B atom. iXA and ix8 
may be further divided into contributions from A and 

:ref where the suffix 'reF has been B atoms, ixa = i ~  +tBA, 
added to avoid confusion between i values for actual 
and reference crystal structures. Here, i~ f = mixA/(m + n) 

= :ref :ref whereby and :ref = nixA/(m + n). Similarly, ixe tAB + tAB, IBA 
iref AB -- mixs/(m + n) and tes:ref = nixe/(m + n). 

It follows that, for each statistical atom in the unit 
cell, the following i values are obtained 

• ret" = mnl(m + n) 2 • ret" = m2/(m + n)": tAB IAA 
.ret mn/(m +n)2; .ref = n2/(m + n)2 (8) lBA-- IBB • 

I indices for the reference structure are obtained by 
summing i indices over all Z(m + n) atomic positions. 
Thus, 

• ref = Zmn/(m + n) Iref = Zm2/(m + n); lAB "AA 
• ~et = Zn2/(m + n). (9) • ret" = Zmn/(m + n); tBB IBA 

Note that these I indices for the reference structure also 
satisfy (4) and that r~e~ = / ~ .  Intrinsic face-interaction 
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Table 2. Values of raw and intrinsic face-interaction indices and Voronoi polyhedral volume ratios for the 85 AB 2 
structural types 

Columns headed Fig. 3(a) and Fig. 4 identify, where necessary, points in these figures. 

System 

Cain 2 
CeCu 2 
A1B 2 
ThSi 2 
MgCu2 
MgNi2 
MgZn2 
Cu2Sb 
ZnP 2 
NizIn 
CuP 2 
Cd2Ce 
Co2Si 
CaF 2 
ThH 2 
PtHg2 
Ag20 
FeSi 2 
RuB 2 
PtEGa 
ZrGa 2 
BaSi 2 
SmSb 2 
MoP~ 
CaC 2 
Au2V 
TiSi 2 
MoSi 2 
CrSi z 
CaSi 2 
Ag2Te 
FeS z (pyrite) 
TiENi 
FeS2 (marcasite) 
POCI 2 
ThC 2 
HfGa 2 
CaSb 2 
SrBr 2 
PdzAs 
BaS 2 
PdSe  2 

SiS 2 
La2Sb 
CS2 
ZrSi 2 
ZrO 2 
SrI 2 
Li2Sb 
NdAs 2 
As2Ge 
Fe2P 
ReB 2 
HoSB z 
Ta2P 
IrSe2 
TiO2 (rutile) 
ZrSb2 
CuMg2 
AIzCu 
FeSb 2 
VO z 
OsGe 2 

0.2857 1.7143 2.1818 1.8182 0.4286 1.2857 1.6364 0.6818 1.1180 51010 1 P 
1.3333 2.6667 4.3636 3.6364 1.0000 1.0000 1.6364 0.6818 1.2066 16494 2 qq 
0.4000 0.6000 1.0909 0.9091 1.2000 0.9000 1.6364 0.6818 1.3649 1461 3 a uu 
1.6000 2.4000 4.3636 3.6364 1.2000 0.9000 1.6364 0.6818 1.2384 50866 4 a tt 
2.0000 6.0000 8.0000 8.0000 0.7500 1.1250 1.5000 0.7500 1.2298 24078 5 b ff 
2.0000 6.0000 8.0000 8.0000 0.7500 1.1250 1.5000 0.7500 1.2279 38650 6 b ff 
1.0000 3.0000 4.0000 4.0000 0.7500 1.1250 1.5000 0.7500 1.2253 38892 7 b ff 
0.8889 1.1111 1.8667 2.1333 1.3334 0.8333 1.4000 0.8000 1.1956 24758 8 ss 
2.0870 5.9130 7.3450 8.6550 0.7826 1.1087 1.3772 0.8114 1.1240 50763 9 cc 
0.0000 2.0000 1.7662 2.2338 0.0000 1.5000 1.3247 0.8377 0.9805 36005 10 z 
0.8421 3.1579 3.4379 4.5621 0.6316 1.1842 1.2892 0.8554 1.0822 24393 11 O 
0.1429 0.8571 0.8571 1.1429 0.4287 1.2856 1.2856 0.8572 1.0403 50991 12 I 
1.0667 2.9333 3.2527 4.7473 0.0800 1.1000 1.2198 0.8901 1.0406 50110 13 Z 
0.0000 4.0000 3.2000 4.8000 0.0000 1.5000 1.2000 0.9000 0.7826 24926* 14 c v 
0.0000 2.0000 1.6000 2.4000 0.0000 1.5000 1.2000 0.9000 0.8119 34370 15 c w 
0.2000 0.8000 0.8000 1.2000 0.6000 1.2000 1.2000 0.9000 0.7116 35043 16 d J 
0.4000 1.6000 1.6000 2.4000 0.6000 1.2000 1.2000 0.9000 0.7090 1020 17 d J 
0.3333 0.6667 0.8000 1.2000 0.9999 1.0001 1.2000 0.9000 0.7726 29340 18 hh 
0.8571 1.1429 1.6000 2.4000 1.2856 0.8572 1.2000 0.9000 1.2028 10882 19 rr 
2.4048 5.5952 6.3516 9.6484 0.9018 1.0491 1.1909 0.9045 0.9841 50205 20 dd 
1.3333 2.6667 2.9524 5.0476 1.0000 1.0000 1.1072 0.9464 1.0160 50431 21 
3.1455 4.8545 5.8413 10.1587 1.1796 0.9102 1.0952 0.9524 1.2864 50211 22 oo 
2.5000 5.5000 5.7778 10.2222 0.9375 1.0313 1.0833 0.9583 0.9865 50480 23 aa 
0.3333 1.6667 1.4286 2.5714 0.5000 1.2500 1.0715 0.9643 0.9669 40157 24 G 
0.5714 1.4286 1.4286 2.5714 0.8571 1.0715 1.0715 0.9643 1.1457 12904 25 e Y 
1.1429 2.8571 2.8571 5.1429 0.8572 1.0714 1.0714 0.9643 1.0111 50428 26 e X 
2.2857 5.7143 5.7143 10.2857 0.8571 1.0714 1.0714 0.9643 1.0062 48491 27 e W 
0.5714 1.4286 1.4286 2.5714 0.8571 1.0715 1.0715 0.9643 1.0010 40418 28 e W 
0.8571 2.1429 2.1429 3.8571 0.8571 1.0715 1.0715 0.9643 0.9996 22495 29 e W 
2.2500 3.7500 4.2462 7.7538 1.1250 0.9375 1.0615 0.9692 1.2839 15227 30 nn 
1.0667 2.9333 2.8070 5.1930 0.8000 1.1000 1.0526 0.9737 1.0334 1305 31 Q 
0.0000 4.0000 2.8000 5.2000 0.0000 1.5000 1.0500 0.9750 0.8330 29099 32 u 
8.000024.0000 21.7143 42.2857 0.7500 1.1250 1.0179 0.9911 0.8452 42987 33 N 
0.0000 2.0000 1.3333 2.6667 0.0000 1.5000 1.0000 1.0000 0.7808 50078 34 s 
0.3333 1.6667 1.3333 2.6667 0.5000 1.2500 1.0000 1.0000 0.9529 14580* 35 f F 
0.6667 3.3333 2.6667 5.3333 0.5000 1.2500 1.0000 1.0000 1.1038 14507 36 f H 
5.3333 10.6667 10.6667 21.3333 1.0000 1.0000 1.0000 1.0000 1.0200 30117 37 ee 
0.5714 1.4286 1.3214 2.6786 0.8571 1.0715 0.9910 1.0045 1.0414 49686 38 T 
0.0000 10.0000 6.4762 13.5238 0.0000 1.5000 0.9714 1.0143 0.7958 18487* 39 t 
2,3273 5.6727 5.1691 10.8309 0.8727 1.0636 0.9692 1.0154 0.9310 6676 40 S 
0.0000 4.0000 2.5263 5.4737 0.0000 1.5000 0.9474 1.0263 1.0258 11616 41 g r 
0.0000 4.0000 2.5263 5.4737 0.0000 1.5000 0.9474 1.0263 0.8544 44875 42 g q 
0.5714 3.4286 2.5263 5.4737 0.4286 1.2857 0.9474 1.0263 0.5518 46951 43 A 
1.2308 2.7692 2.5098 5.4902 0.9231 1.0385 0.9412 1.0294 0.9145 37833 44 V 
0.0000 4.0000 2.5000 5.5000 0.0000 1.5000 0.9375 1.0313 0.6643 50434 45 g p 
1.5000 2.5000 2.5000 5.5000 2.1250 0.9375 0.9375 1.0313 1.0191 48707 46 g ii 
0.0000 4.0000 2.4762 5.5238 0.0000 1.5000 0.9286 1.0357 0.7284 32612* 47 g n 
0.0000 8.0000 4.9524 11.0476 0.0000 1.5000 0.9286 1.0357 0.7759 17043* 48 g o 
1.0909 4.9091 3.7143 8.2857 0.5454 1.2273 0.9286 1.0357 0.9296 51138 49 E 
1.3333 2.6667 2.4265 5.5735 1.0000 1.0000 0.9099 1.0450 1.0365 49706 50 bb 
3.3667 4.6333 4.6944 11.3056 1.2625 0.8687 0.8802 1.0599 0.8448 50219 51 kk 
0.7143 2.2857 1.7395 4.2605 0.7143 1.1428 0.8697 1.0651 0.8764 28873 52 M 
0.8571 1.1429 1.1429 2.8571 1.2856 0.8572 0.8572 1.0714 1.2545 51023 53 h mm 
0.8571 1.1429 1.1429 2.8571 1.2856 0.8572 0.8572 1.0714 1.0303 50414 54 h 11 
3.8095 8.1905 6.7025 17.2975 0.9524 1.0238 0.8378 1.0811 0.8693 50283 55 R 
0.0000 8.0000 4.4667 11.5333 0.0000 1.5000 0.8375 1.0812 0.7183 36910 56 i m 
0.0000 2.0000 1.1111 2.8889 0.0000 1.5000 0.8333 1.0833 0.6444 28207* 57 i 1 
2.7692 5.2308 4.4118 11.5882 1.0385 0.9808 0.8272 1.0864 0.8712 50196 58 U 
3.2000 12.8000 8.5333 23.4667 0.6000 1.2000 0.8000 1.1000 0.7519 24080 59 j C 
0.8000 3.2000 2.1333 5.8667 0.6000 1.2000 0.8000 1.1000 0.7827 2301 60 j D 
0.4000 1.6000 1.0667 2.9333 0,6000 1.2000 0.8000 1.1000 0.7653 50073 61 j C 
0.4000 3.6000 2.1176 5.8824 0.3000 1.3500 0.7941 1.1030 0.6521 43637 62 y 
1.0909 2.9091 2,1071 5.8929 0.8182 1.0909 0.7902 1.1049 0.8655 49872 63 k L 

IBA Ins I ~  I ~  I~A I~B V f V v MDF code Ref. Fig. 3(a) Fig. 4 
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Table 2 (cont.) 

System Iaa lab IBa IBB I'0 l'aB I'BA I'BB VVa V v MDF code Ref. Fig. 3(a) Fig. 4 

NbSb 2 1.0909 2.9091 2.1071 5.8929 0.8182 1.0909 0.7902 1.1049 0.8413 41363 64 k K 
SiO 2 (coesite) 1.5273 14.4727 8.0511 23.9489 0.2864 1.3568 0.7548 1.1226 0.5184 21622* 65 x 
CuCI 2 0.0000 2.0000 1.0000 3.0000 0.0000 1.5000 0.7500 1.1250 0.6036 35971* 66 1 i 
V2N 0.0000 3.0000 1.5000 4.5000 0.0000 1.5000 0.7500 1.1250 0.6537 51064 67 1 j 
CdCI 2 0.0000 1.0000 0.5000 1.5000 0.0000 1.5000 0.7500 1.1250 0.7367 27117* 68 1 k 
SiO2(1.cristobalite ) 0.0000 4.0000 2.0000 6.0000 0.0000 1.5000 0.7500 1.1250 0.3974 17256* 69 1 g 
CoSb 2 0.8000 3.2000 1.9683 6.0317 0.6000 1.2000 0.7381 1.1309 0.7491 20594 70 B 
SiO2(1.quartz ) 0.0000 3.0000 1.4286 4.5714 0.0000 1.5000 0.7143 1.1428 0.4645 21232* 71 m h 
CaCI 2 0.0000 2.0000 0.9412 3.0588 0.0000 1.5000 0.7059 1.1471 0.6604 11396* 72 m j 
FezC 0.0000 2.0000 0.9412 3.0588 0.0000 1.5000 0.7059 1.1471 0.6703 50077 73 m j 
NbTe 2 2.4545 3.5455 2.8000 9.2000 1.2272 0.8864 0.7000 1.1500 0.7134 49893 74 gg 
MoS 2 1.0000 1.0000 0.9231 3.0769 1.5000 0.7500 0.6923 1.1538 0.6951 40237 75 n pp 
Nbs 2 1.0000 1.0000 0.9231 3.0769 1.5000 0.7500 0.6923 1.1538 0.6819 41323 76 n pp 
TiO2(II) 0.0000 4.0000 1.7778 6.2222 0.0000 1.5000 0.6667 1.1667 0.6690 29514* 77 o j 
PbO 2 0.0000 4.0000 1.7778 6.2222 0.0000 1.5000 0.6667 1.1667 0.6974 50107 78 o j 
TiO 2 (brookite) 0.0000 8.0000 3.3824 12.6176 0.0000 1.5000 0.6342 1.1829 0.6260 18398* 79 f 
SiO 2 (keatite) 0.0000 12.0000 4.8391 19.1609 0.0000 1.5000 0.6049 1.1976 0.4302 17232* 80 p d 
CdI 2 0.0000 1.0000 0.4000 1.6000 0.0000 1.5000 0.6000 1.2000 0.6640 52280 81 p e 
Fe2N 0.0000 3.0000 1.2000 4.8000 0.0000 1.5000 0.6000 1.2000 0.6672 28495 82 p e 
SiO 2 (1.tridymite) 0.0000 48.0000 18.5694 77.4306 0.0000 1.5000 0.5803 1.2099 0.3807 786* 83 p a 
SiO2(h.quartz ) 0.0000 3.0000 1.1429 4.8571 0.0000 1.5000 0.5715 1.2143 0.4209 37266* 84 p b 
TiO 2 (anatase) 0.0000 4.0000 1.4118 6.5882 0.0000 1.5000 0.5294 1.2353 0.5760 28208* 85 c 

1"Code-numbers followed by an asterix refer to the ICSD (Inorganic Crystal Structure Database) and not the MDF (Metals Data 
File). References (in CODEN form): (1) ZAACAB 330 221 1964; (2) JCOMAH 30 237 1973; (3) JAPUAW 44 970 1971; (4) ZAACAB 249 
325 1942; (5) JSSCBI 30 209 1979; (6) ACBCAR 36B 1548 1980; (7) ACHSE7 43 296 1989; (8) AKMGAE 12B 1 1935; (9) JPCSAW 24 333 
1963; (10) MSCEAA 22 133 1976; (I 1) ZAACAB 491 225 1982; (12) GCITA9 84 463 1954; (13) ACCRA9 8 83 1955; (14) JCPSA 41 2324 
1964; (15) ACCRA9 15 287 1962; (16) MOCMB7 84 211 1953; (17) JACTAW 55 25 1972; (18) ACSAA4 14 1414 1960; (19) ACSAA4 17 
2036 1963; (20) MTLLAF 28 1160 1974; (21) ZEMTAE 53 474 1962; (22) ACIEAY 2 393 1963; (23) INOCAJ 6 1685 1967; (24) ZEMTAE 55 
619 1964; (25) JCPSA6 35 1950 1961; (26) ZEMTAE 53 433 1962; (27) ACBCAR B33 2347 1977; (28) SSCOA4 55 629 1985; (29) AKMGAE 
11A 10 1933; (30) JSSCBI 28 369 1979; (31) ZEKGAX 112 44 1959; (32) MRSPDH 22 49 1984; (33) TMSAAB 227 674 1963; (34) ZKKKAJ 
97A 504 1937; (35) ZEKGA 100 189 1938; (36) ACBCAR 24B 1121 1968; (37) NATWAY 49 57 1962; (38) ZAACAB 425 104 1976; 
(39) JSSCB 46 313 1983; (40) JCOMAH 19 300 1969; (41) ACBCAR B31 2905 1975; (42) NATWAY 44 229 1957; (43) ACBCAR 38B 1270 
1982; (44) ACBCAR 36B 220 1980; (45) JCPSA 48 2974 1968; (46) 00ACAS 57 8 1955; (47) JACTA 73 2828 1990; (48) ZAACA 369 62 1969; 
(49) ZNBAD2 32B 357 1977; (50) ACBCAR 34B 1959 1978; (51) ACCRA9 15 167 1962; (52) JUPSAU 46 1616 1979; (53) ACCRA9 15 97 
1962; (54) INOCAJ 10 2089 1971; (55) ACSAA4 20 2393 1966; (56) JSSCBI 89 315 1990; (57) JACSA 109 3639 1987; (58) ACSAA4 26 1633 
1972; (59) NATWAY 38 46 1951; (60) JSSCBI 83 370 1989; (61) ASAA4 23 3043 1969; (62) ACSAA4 24 420 1970; (63) ZEMTAE 51 238 
1960; (64) NATUAS 203 512 1964; (65) AMMIA 66 324 1981; (66) AMMIA 78 187 1993; (67) ACBCAR 35B 2677 1979; (68) JSSCB 19 6761 
1986; (69) ZEKGA 138 274 1973; (70) ACSAA4 25 411 1971; (71) AMMIA 65 920 1980; (72) TACAA 6 57 1970; (73) AMETAR 20 645 
1972; (74) ACCRA9 20 264 1966; (75) CJPHAD 61 76 1983; (76) JSSCBI 37 140 1981; (77) MRBUA 23 743 1988; (78) ZFKHA9 26 743 
1952; (79) CAMIA 17 77 1979; (80) ZEKGA 112 409 1959; (81) XNBSAV 44C 233 1969: (82) MITLAC 49 195 1957; (83) ACBCA 33 2615 
1977; (84) JALCE 197 137 1993; (85) JACSA 109 3639 1987. 

indices ' t I'AA, I~AB, l~a and l'eB may now be defined as 

= IBA[lr~A,ffBB = IBB[Ir~B . (10) ffBA ef. ef 

5. Generation of topological and geometrical- 
topological structure diagrams 

On the basis of the intrinsic face-interaction indices 
defined in (10), it is possible to generate two- 
dimensional topological structure diagrams, whereby 
each structural type may be represented as a point. The 
requirement of a two-dimensional diagram follows from 
(4), (9) and (10), as it may be shown that the values 
of 1~ and 148 are interdependent, as are the values 
of I[A and ' liB. The pair of values (1~ and I~B) thus 
determines the numbers and types of interactions in a 

given structure unambiguously. Substitution of (9) into 
(10), together with the application of conditions (4), 
leads to the following results 

~B= 1 + (mln)(1 - ~AA) 

ffBA -- 1 + (n/m)(1 - fnn). (11) 

Rather than present a full topological characterization 
of all 288 binary structural types, attention is focused 
here on the largest subset, that corresponding to stoi- 
chiometry AB2. Calculated I and I' values are given in 
Table 2, where it is observed that the sums IAA + lAB and 
ISA + IBB are always integral, in accordance with (4). Fig. 
3(a) is a two-dimensional topological structure diagram 
of the 85 AB2 structural types, with t ~  and JBB as 
axes. In general, the structural types are well separated, 
with points in all four quadrants of the diagram. Salt- 
like structures, i.e. those made up of cation coordination 
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polyhedra, have l~a = 0. Thus, they are located on the 
vertical I'~B axis. Worthy of note is the clustering of 
points around the (#aa, I~B)= (1,1) axial intersection: 
provided that the relative sizes of A and B atoms are 
similar, these structural types are predicted to be suscep- 
tible to order--disorder transformations, since IAA ~/rA~r 
and IBB ~ Ir~f B. HfGa2, in particular, with I~AA = I~B = 1 and 
vV/v  v = 1.0200 (i.e. similar Voronoi polyhedral volumes 
of Hf and Ga ions), is likely to be susceptible to such 
a transformation. 

The following broad interpretation may be given for 
the positions of points in the diagram: structures in 
the bottom-left quadrant have I~AA, #BB < 1, indicating a 
tendency for coordination of A atoms by B atoms and 
B atoms by A atoms, i.e. good mixing of dissimilar 
ion types. Interestingly, the structural types with the 
lowest (faa, 1'88) values, Ni2In and CaIn2, both contain 
indium. The top-left quadrant includes structures based 

on coordination polyhedra at the far left (i.e. IIAA = 0) ,  

whereby interactions between the B atoms forming the 
coordination polyhedra (generally anions) give rise to 
large I~B values. A tendency towards such structures 
is maintained in the top-left quadrant, this diminishing 
with increasing values of I~AA . It is to be noted that the 
effect of stoichiometry is marked, since no structures are 
observed with I~B = 0, which would correspond to the 
component in stoichiometric excess being coordinated 
exclusively by the minority component. Structural types 
in the bottom-right quadrant are characterized by signif- 
icant nearest-neighbour interactions between minority A 
ions, which occur at the expense of B. . .B interactions. 
Furthermore, structures in the top-right quadrant display 
poor mixing of A and B components, with a tendency 
towards homoatomic A...A and B.. .B interactions. 

Insight into the geometrical basis of some of these 
observations is provided by Fig. 3(b). Here, the plotted 
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Fig. 3. (a) Topological structure diagram for the 85 AB2 structural types 
in Table 2. Chemical compositions are indicated wherever space 
allows. Otherwise points are labelled with characters a-p, which can 
be correlated with compositions in Table 2. (b) Identical structure 
diagram to (a), but with the points labelled by values of Voronoi 
polyhedral volume ratios, vV/v v. Overlapping or clustered points 
are labelled with mean values for contributing points. (c) Identical 
structure diagram to (a) and (b), but with points labelled by 
values of absolute electronegativity differences (Pauling scale) of 
the appropriate compositions I\A -- \BI. Overlapping or clustered 
points are labelled with mean values for contributing points. 
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points are identical to those in Fig. 3(a), but they are 
labelled by values of vV/v  v, the ratio of the volumes of 
Voronoi polyhedra. This ratio is chosen to represent the 
geometry of a given structural type, since its value is 
dependent on the atomic coordinates of constituent ions 
and not their radii. Thus, to a good approximation, vV/v  v 
is representative of a structural type, regardless of the 
particular composition concerned. The approximation 
being made here is that the atomic coordinates of the 
parent composition of a structural type, which have 
been used to calculate the vV/v  v values in Table 2, are 
representative of all compositions of that type. In some 
structural types, e.g. MgCu2, the ions occupy special 
positions with invariant coordinates, so that VV/v v is 
constant for all structures of that type. In a structural 
type where some or all the ions occupy positions with 
variable coordinates, some variation in VvA/VV B values will 
be observed between alternative compositions. For this 
reason, some of the points in the Fig. 4 representation 
could, in principle, be replaced by horizontal bars, of 
width corresponding to the degree of variation V~A'/V v 
found within all compositions of a particular type. 

In general, points in the top-left quadrant of Fig. 
3(b) have Vv/V v < I, indicating that a small A-ion size 
favours A ions coordinated by B ions. Such structures 
consist, in the main, of A ions occupying interstitial 
sites between densely packed B ions. By comparison, 
points in the opposite (bottom-right) quadrant tend to 
have VVA/V v ratios greater than one. This indicates that a 
larger relative size of the minority A component favours 
A...A homoatomic interactions, although the majority 
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Fig. 4. Geometrical-topological structure diagram for the 85 AB2 
V V compounds in Table 2, The geometrical axis, V~/V B, is horizontal, 

with the vertical axis corresponding to the reduced topological 
variable ltAA -- IteB. Many points are observed to be close to the 
diagonal from bottom-left to top-right of the diagram. Chemical 
compositions are indicated by characters a-z, A-Z, aa-uu, which 
can be correlated with the compositions in Table 2. 

of B ions do not function as interstitial ions here. The 
dominant trend in Fig. 3(b) is an increase in VV/V v from 
top-left to bottom-right in the diagram. 

In Fig. 3(c), values of absolute electronegativity dif- 
ference are used to label the points. In general, a 
significant ionic character in the bonding arises when 
IXA- XsI > 1, as is observed for salt-like compounds 
(top, far-left). Otherwise, there is no clear correlation 
between IXA-  XSI values and the positions of points, 
and electronegativities cannot be used to discriminate 
between the tendencies of A and B ions to mix well 
(bottom-left quadrant) or not (top-right quadrant). 

The observed general increase in V~'/V~ from top-left 
to bottom-right in Fig. 3(b) may be exploited to plot a 
geometrical-topological structure diagram, as in Fig. 4. 
Here, the vertical topological axis is a combination of/~A 
and I~8, llaa --ItBB , which increases uniformly from the 
top-left of Fig. 3(b) to bottom-right. Accordingly, in Fig. 
4 most of the plotted points are relatively close to the 
diagonal from bottom left to top right. It may be argued 
that geometrical (i.e. packing) effects are predominant 
in structural types close to this diagonal. Significant 
deviations from the diagonal indicate strong interaction- 
driven (i.e. chemical) influences on the structures, as, 
for example, for compositions r (BaS2), z (Ni2In), gg 
(NbTe2), hh (FeSi2), kk (As2Ge) and pp (MoS2, NbS2). 

6. Discussion 

Figs. 3 and 4 have been referred to as topological 
and geometrical-topological structure diagrams, respec- 
tively, with indices ltAA and I'88 representing 'topology' 
and the ratio VV/V v representing 'geometry'. There is 
scope, however, for refining the method by which the 
valence fractions of the atoms are distributed over the 
faces of their respective Voronoi polyhedra, such that 
the forms of the polyhedra are taken into account in 
this process. Work is currently in progress to investi- 
gate altemative valence-partitioning methods, so that the 
calculated face-interaction indices reflect the differing 
interaction strengths of Voronoi faces. Seven purely 
geometrical methods are under examination: (i) the 
existing method (even distribution of atomic valences 
over polyhedral faces); (ii) even distribution of valences 
over polyhedral vertices; valence distribution over faces 
in proportion to (iii) facial areas; (iv) facial volume 
contributions; (v) solid angles subtended by faces at 
the source atoms of the polyhedra; (vi) an inverse- 
square variation of source atom-to-face distance, l/d2; 
(vii) a combination of (v) and (vi). Partitioning of the 
valences is carried out by the software described in 
Appendix B, based on the quantities calculated in step 
9. It would also be instructive to investigate a synthesis 
of this method and the bond-valence method (Brown 
& Altermatt, 1985; Brese & O'Keeffe, 1991; O'Keeffe 
& Brese, 1992). Proceeding from the centre-to-centre 
distances between neighbouring atoms, total valences for 
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Table 3. Comparison of intrinsic face-interaction indices, I'~, l'aB, I'sA and I'sB between the systems MgCbl 2, MgNi 2 
and MgZn 2 for different valence-weighting schemes 

Number based Area based Volume based Solid angle based 1 / d  2 based 
System/ion Mg Cu/Ni/Zn Mg Cu/Ni/Zn Mg Cu/Ni/Zn Mg Cu/Ni/Zn Mg Cu/Ni/Zn 
MgCu2/Mg 0.75 1.125 0.7443 1.1276 0.7694 1.1153 0.7107 1.1446 0.7021 1.1489 
MgCua/Cu 1.5 0.75 1.2541 0.8729 1.3716 0.8142 1.1446 0.9277 1.2632 0.8684 
MgNia/Mg 0.75 1.125 0.7434 1.1283 0.7682 1.1159 0.7093 1.1454 0.7017 1.1492 
MgNi2/Ni 1.5 0.75 1.2535 0.8733 1.3702 0.8149 1.1454 0.9273 1.2654 0.8673 
MgZnz/Mg 0.75 1.125 0.7415 1.1292 0.7666 1.1167 0.7072 1.1464 0.7011 1.1465 
MgZna/Zn 1.5 0.75 1.2527 0.8736 1.3683 0.8159 1.1464 0.9268 1.2683 0.8658 

each ion could be calculated, leading straightforwardly 
to valence fractions iaA, iAB, iBa and ise. This would 
also be a means of taking chemical information into 
account retrospectively. Although the Voronoi polyhedra 
are constructed without regard to differing atomic radii 
(in order to achieve closure), the bond-valence method 
could still be used, as it relies solely on centre-to-centre 
interatomic distances. According to such an approach, 
the essential rf le of the Voronoi construction would be 
to establish which atoms to regard as nearest neighbours, 
just as in the work of Frank & Kasper (1958).* 

One of the deficiencies of a structure diagram such 
as Fig. 3 is that some points would be expected to 
be closer to one another than they are, whereas others 
would be expected to be further apart. Relevant examples 
are the polymorphic systems TiO2, SiO2 and FeS2. The 
first of these has four polymorphs, anatase, brookite, 
TiO2(II) and rutile [points TiO2(a), TiO2(b), o and i, 
respectively]. However, if indices /AA and I~B are to 
represent 'chemistry' ,  rather than 'topology', it would be 
desirable, given their identical chemical compositions, 
for the four points to be closer together, with no other 
structures intervening. Similar considerations hold for 
the six polymorphs of SiOe analysed: three lie in the 
cluster of points p, i.e. high quartz, keatite and low 
tridymite, with low quartz and low cristobalite repre- 
sented by points m and l, respectively. Coesite [labelled 
SiO2(coes)] is unique in having a non-zero I ~  index. 
The two polymorphs of FeS2, pyrite [FeS2(p) in Fig. 
3(a)] and marcasite [FeS2(m)], have adjacent points in 
the structure diagram. 

In other cases, it would be helpful if the method 
could differentiate more between alternative phases, 

* The envisaged progression from the simple number-based distribu- 
tion of valences over polyhedral faces (used here) to a distribution 
invoking a bond-valence approach mirrors the development of the 
bond-valence method itself. Essentially, this grew out of Pauling's 
S.econd Rule (Pauling, 1960; Thomas, 1991), according to which the 
numbers of anions coordinating cations determine the 'electrostatic 
bond strengths' between them. In essence, the bond-valence method 
permitted the assignment of unequal bond strengths to identical types 
of ion pairs, by using their separations as indicators of interaction 
strength. In the Voronoi methodology introduced here, atomic valences 
are distributed over shared polyhedral faces, rather than cationic 
valences over shared anions. Thus, the simple number-based distribu- 
tion is analogous to the topological approach embodied by Pauling's 
Second Rule. 

for example, the three Laves phases, MgCu2, MgZn2 
and MgNi2, which have identical number-based face- 
interaction indices. This would be achieved by taking 
the geometrical forms of the polyhedra into account in 
the derivation of these indices, as shown in Table 3. 
Here, the intrinsic face-interaction indices I' resulting 
from alternative valence-distribution methods are quoted 
for each of these systems. Values quoted in Table 2 
correspond to the simple number-based method and are 
also quoted in the left-hand column in Table 3. These 
have identical values for MgCu2, MgZn2 and MgNi2, i.e. 
I ~  =0.75, l iB=  1.125, ItBA = 1.5 and l~o =0.75. In the 
column for area-based weighting the valence fractions 
assigned to polyhedral faces are proportional to facial 
areas. Volume, solid angle and 1/de-based weightings 
make use of pyramidal volumes, solid angles and 
centre-to-face distances, respectively. It is clear from 
Table 3 that there are variations in calculated indices 
as the weighting method is changed. However, it is 
also significant that consistent trends in I' values are 
observed between the three structures. For example, I ~  
values (i.e. Mg-Mg interaction indices) vary as follows 
for all non-simple weighting methods: I~A(MgCu2) > 
I~(MgNi2)  > l~(MgZn2).  For all indices, values for 
MgNi2 are intermediate between those of MgCu2 and 
MgZn2, indicating that the methodology is sensitive 
to the underlying structural progression from MgCu2 
through MgNi2 to MgZn2. 

The work described in this paper has laid the foun- 
dation for an extensive programme of future work. In 
the field of inorganic structural chemistry, the method 
offers new possibilities for investigating relationships 
between chemical composition and crystal structure. 
It is significant that structures with different types of 
bonding (e.g. ionic and metallic) can be analysed with 
the same framework, as well as intermediate cases, such 
as Zintl phases. Application to molecular systems is also 
possible, given the generality of the method. 

Of fundamental interest is the prospect of deriving 
quantitative chemical information merely from exper- 
imental crystal structural data, without recourse to any 
prior assumptions or adjustable parameters. The Voronoi 
analysis provides a more panoramic view of the relation- 
ship between chemical composition and crystal structure 
than that afforded by many current methods, which rely 
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Special positions 
End 

Edge vertices 

(96h) (96g) (96g) 
(96g) (96g) (32e) 
(48f) (96g) (96g) 
(32e) (32e) (8b) 

Table 4. Representative points of Voronoi edges in the MgCu 2 structure 

Coordinates and special 
Coordinates Coordinates positions a quarter of the way Coordinates halfway 

of end vertex 1 of end vertex 2 along the edge along the edge 
x y z x y z x y z x y z 

0.1771 0.0208 0.1771 0.0729 0.0729 0.2292 0.1510 0.0339 0.1901 (192i) 0.1250 0.0469 0.2031(96h) 
0.0729 0.0729 0.2292 0.1125 0.1125 0.3875 0.0828 0.0828 0.2688(96g) 0.0927 0.09270.3083(96g) 
0 .2292-0 .0729-0 .0729  0.2292 0.0729 0.0729 0.2292-0.0365 -0.0365 (96g) 0.2292 0.0000 0.0000(48f) 
0.3875 0.3875 0.3875 0.5 0.5 0.5 0.4156 0.4156 0.4156(32e) 0.4438 0.4438 0.4438(32e) 

Special 
position Atom 
of face types 

(96g) Mg Cu 
(48f) Cu Cu 
(16c) Mg Mg 

Table 5. Representative points of Voronoi faces in the MgCu z structure 

Coordinates and special Coordinates halfway 
Coordinates Coordinates positions a quarter of the way along the interatomic 

of atom 1 of atom 2 along the interatomic vector vector 
x y z x y z x y z x y z 

0.0000 0.0000 1.0000 0.1250 0.1250 0.6250 0.0312 0.0312 0.9062(96g) 0.0625 0.0625 0.8125(96g) 
0.6250 0.1250 0.1250 0 .6250-0 .1250-0 .1250  0.6250 0.0625 0.0625(96g) 0.6250 0.0000 0.0000(48f) 
0.0000 0.0000 0.0000 0.2500 0.2500 0.2500 0.0625 0.0625 0.0625(32e) 0.1250 0.1250 0.1250(16c) 

heavily on a consideration of interatomic distances and 
their relationship to idealized atomic radii. 

Acknowledgement is made of the use of the EPSRC- 
funded Chemical Databank Service for part of the work. 

APPENDIX A 
A justification of the procedure for calculating 

representative points of Voronoi polyhedral elements 

In Table 4 the choice of representative points for Voronoi 
edges in the MgCue system is justified, by way of an 
example. As specified in Table 6, these correspond to 
special positions (96h), (96g), (48f) and (32e) in space 
group Fd3m. The fractional coordinates for one edge of 
each type are given in Table 4. For illustrative purposes, 
tWO alternative representative points for each of the four 
edge types are considered, one a quarter of the way along 
the edge (as an arbitrary distance along the edge) and the 
other half-way along. With respect to the (96h) edge, it is 
seen that the quarter-point occupies a (192i) position, so 
that such a representative point would generate double 
the required number of equivalent edges in the unit 
cell. By comparison, the point half-way along the edge 
occupies a (96h) special position and is the appropriate 
representative point for the edge. 

In the case of the (96g) edges, which link unlike 
(96g) and (32e) vertices, both trial representative points, 
at a quarter and a half of the distance along the edge, 
have (96g) symmetry. In principle, therefore, any point 
on such an edge could be taken as a representative 
point. However, only the adoption of half-way points 
is adequate for edges linking like vertices, as is also 
observed for (48f) edges. 

The choice of representative points of Voronoi faces 
in MgCu2 is demonstrated in Table 5. As for edges, 
faces shared by unlike atoms [i.e. (96g) faces] could be 

represented by any point along the interatomic vector 
normal to the face. By comparison, faces shared by like 
atoms must be represented by points midway along the 
interatomic vector, as for the (48f) and (16c) faces. 

APPENDIX B 
Description of the computational procedure applied 

Since there is no freely available software for the calcu- 
lation of Voronoi polyhedra, a new computer program 
has been developed, based on a schedule given by 
Mackay (1972). Since the program is to be applied to a 
variety of chemical systems in the future, many of them 
more complex than the inorganic systems considered 
here, it has been designed to run efficiently on a Silicon 
Graphics 4D/480 Parallel Processor. To this end, explicit 
parallelization calls have been utilized, these permitting 
a considerable shortening of execution time. In essence, 
calculation of the vertex coordinates of the polyhedra 
is distributed over several (i.e. 4-8) processors, with 
a one-to-one correspondence between polyhedron (or, 
equivalently, atom in source unit cell) and processor. 
Once a particular processor has finished calculating a 
given polyhedron, it moves onto a new one. 

The essential steps of the program are as follows. 
(a) Read in unit-cell parameters and fractional coor- 

dinates of all atoms in the unit cell, referred to as the 
'source' unit cell. 

(b) Generate all translationally related atoms within a 
specified cut-off distance of atoms in the source unit cell, 
to form the complete set of atoms. Typically 3.5 < cut- 
off< 7 A,, depending on the chemical system. 

(c) Specify an atomic radius for each atom type (see 
step e). 

Steps (d)-(i) are carried out repeatedly in parallel, the 
sequence being applied to each atom i in the source unit 
cell. 
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(d) Take an atom in the source unit cell and select all 
possible sets of three coordinating atoms, provided that 
all four atoms (i.e. source atom + coordinating atoms) 
are not coplanar. 

(e) For each set of four atoms, calculate the coordi- 
nates of the point [xv, yv, zv], which is equidistant from 
the surface of each atom, at distance D (Fig. 5). This 
calculation utilizes an algebraic method, in which the 
following four simultaneous equations are solved 

(Xv  --  Xi) 2 + ( Y v  -- Yi )  2 + (Zv  -- Zi) 2 = ( g i  + D)  2, 

i -  1,4. (12) 

Computation of [xv, yv, zv] is simplified by an appro- 
priate axis transformation, whereby xl, y~, z~, Y2 and z2 
become equal to zero. Coordinates [xv, yv, zv] represent 
a trial Voronoi vertex. If radii R1-R4 (as specified in 
step c) are equal, the calculated coordinates correspond 
to the vertices of an unmodified Voronoi polyhedron, 
since the distance of the point to each atomic centre is 
R + D. For unequal radii, however, the point [xv, Yv, zv] 
would correspond to the vertex of a modified Voronoi 
polyhedron similar to a PAV cell, as proposed by Carter 
(1978), Fig. l(c).* For all calculations of polyhedra 
in this article, RI-R4 have been given equal values, 
arbitrarily set at 0.2 ~. Note that the magnitude of the 
uniform radius does not affect the calculated values [xv, 
yv, zv]. 

(f) Test that this is a valid Voronoi vertex, by ensuring 
that no atom surface (amongst the complete set of atoms) 
is closer to [xv, yv, zv] than the distance D. 

(g) Record which three coordinating atoms (see step 
3) have generated [xv, Yv, zv] and, in the case of this 
vertex being a repeat within the same polyhedron, keep 
a cumulative record of which coordinating atoms have 
generated it. 

(h) Once all vertices [xv, yv, zv] have been gen- 
erated, identify the faces of the Voronoi polyhedron. 
This procedure is carried out on a logical, rather than 

* The situation depicted in Fig. l(c) represents a worse case scenario, 
since perfect coincidence of PAV faces at vertices is frequently 
obtained with unequal radii. The software can calculate PAV cells 
wherever the vertices are coinciden.t, with no provision, as yet, for 
dealing with indeterminate regions. 

©-"  " ( ~  

( }  ° 
(a) 

o 

(b) 

Fig. 5. Method used by the software to calculate Voronoi polyhedra: 
(a) for unmodified polyhedra, with vertices equidistant from atom 
centres; (b) for polyhedra similar to PAV cells, with vertices 
equidistant from atom surfaces. 

a geometrical basis. Since each face of the Voronoi 
polyhedron being generated is shared with a Voronoi 
polyhedron of a coordinating atom, the vertices in a 
given face are those for which the relevant coordinating 
atom has been involved in their generation. Monitor any 
deviations in planarity of the polyhedral faces. 

(i) Calculate the following attributes of the Voronoi 
polyhedron: 

(i) Numbers of comers (vertices), edges and faces, C, 
E and F, respectively, together with frequencies of faces, 
fF, with different numbers of comers, N F. 

(ii) Area of each face, AF (more precisely, area of the 
projection of the face in its least-squares plane). 

(iii) Volume contribution due to each face, VF. This is 
calculated by splitting the face into constituent triangles 
with a common vertex at its centre of coordinates, 
followed by a summation of the volumes of constituent 
triangular pyramids with the source atom as the apex 
(Thomas, 1991). 

(iv) Solid angle (b subtended at the source atom 
by each face, SF, employing the constituent triangle 
methodology in (iii) and the following formula (Mackay, 
1972) 

qb = 2COS -l {(1  + c o s  c~ + c o s / 3  + cos "3')/ 

[4cos (od2)cos (/3/2)cos (7/2)] }. (13) 

Here, a , /3  and 7 are the angles subtended at the source 
atom by the three edges of each constituent triangle. 

(v) Distance of each face from the source atom, 
defined as 

dr= (l/2){[(Xc - Xs) 2 + (Yc - Ys) 2 + ( Z c -  Zs)2] 1/2 

+ Rs - Rc}. (14) 

Here [Xs, Ys, Zs] and [xc, Yc, zc] are coordinates of 
source and coordinating atoms, with Rs and Rc their 
corresponding radii. For conventional Voronoi polyhedra 
Rs = Rc. 

(vi) Total facial area, AF,tot [ s u m  of areas calculated 
in (ii)]. 

(vii) Total volume enclosed, VF,tot [sum over all faces 
of volumes calculated in (iii)]. 

(viii) Total solid angle subtended at source atom SF,tot 
[sum over all faces of solid angles calculated in (iv)]. 
(This calculation is carried out as a check, since the 
total solid angle must be equal to 47r steradians.) 

(ix) Lengths of edges constituting each face, d F, 
together with angles between adjacent edges, c~ F. 

(x) Centres of coordinates of faces, [XF, YF, ZF], 

defined as those points which lie on the lines joining 
source atoms with neighbouring atoms, midway between 
the two spherical ion surfaces. In the special case of 
equal ionic radii, the centres of coordinates of faces 
correspond to the midpoints of lines joining source and 
coordinating atoms. 

(xi) Centres of coordinates of edges, [xE, yE, zE]. 
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Table 6. Geometrical attributes of Voronoi polyhedra of  the MgCu 2 structure (Ellner & Predel, 1979); space group 
Fd3m, origin at -43m; a o = 7.034A; Mg in (8a) positions, Cu in (16d) positions 

Attribute Mg polyhedron Cu polyhedron 

[Xv,Yv, Zv] 24C in (96g) (x, x, z; x = 0.0729, 12C in (96g) 
z = 0.2292) 6C in (32e) 
4C in (32e) (x, x, x; x = 0.3875) 2C in (8b) [½, ~, ~] 

(96g): shared by 2 Mg and 2 Cu polyhedra 
(32e): shared by 1 Mg polyhedron and 3 Cu polyhedra 
(8b): shared by 4 Cu polyhedra 

CIFIEI 28116142 20112130 
fv [N~] 4161 12151 12151 
AF (A ~) 2.0922 [6] 2.9398 [5] (shared with Cu) 

2.1118 [5] 2.1118 [5] (shared with Mg) 
VF (,~3) 1.0621 [6] 1.2185 [5] (shared with Cu) 

1.0264 [5] 1.0264 [5l (shared with Mg) 
S F (4zr.steradian) 0.05923 [6] 0.10308 [5] (shared with Cu) 

0.06359 [5] 0.06359 [5] (shared with Mg) 
de (,~,) 1.5229 [6] 1.2435 [5] (shared with Cu) 

1.4581 [5] 1.4581 [5] (shared with Mg) 
aF.tot (,~2) 33.7099 30.3091 
VF.to t (/~k 3) 16.5647 13.4691 
SF, tOto (4zr. steradian) 1 1 
d F (A) 6 x 0.897 [6] 1 × 1.451 [5] (shared with Cu) 

2 x 1.371 
1 x 1.451 [5] 2 x 1.181 
2 x 1.181 
2 x 0.897 1 x 1.451 [5] (shared with Mg) 

2 × 1.181 
2 × 0.897 

a~e (°) 6 x 120 [6] 3 × 109.5 [5] (shared with Cu) 
2 × 105.8 

1 x 112 .9  [5] 
4 x 106.8 

[XF, YF, ZF] 12F in (96g) (x, x, z; x = 0.0625, 
Z = 0.8125) (Mg. . .Cu)  

4F in (16c) (~, ~, I) (Mg. . .Mg) 
DE, re,  zE] 24E in (96h) (I, x, ~ - x; x = 0.0469) 

(2Mg, 1Cu) 
12E in (96g) (X, x, z; x = 0.0927, z = 0.3083) 

(1Mg, 2Cu) 
6E in (48f) (x, 0, 0; x = 0.2292) 

(1Mg,2Cu) 
CN(A) 15.9997 
CN(V) 15.9964 
CN(S) 15.9854 
VX / Vv 1.2298 

1 x 112.9 [5] (shared with Mg) 
4 x 106.8 
6F in (96g) (Cu-. .Mg) 
6F in (48g) (x, 0, 0; x = 0.6250) (Cu. • .Cu) 

6E in (96h) (1Cu,2Mg) 
12E in (96g) (2Cu, 1Mg) 
6E in (48f) (2Cu, 1Mg) 
6E in (32e) (x, x, x; x = 0.4438) (3Cu) 

11.6860 
11.9128 
11.3623 

(xii) Effective coordination numbers of the source 
atom, calculated according to equation (1), with alter- 
native interpretations of si: facial areas [CN(A)], volume 
increments of faces [CN(V)] or solid angles [CN(S)]. 

Once steps (d)-(i) have been completed for each 
source atom, the following calculations are performed 
serially. 

(j) Enumeration of total numbers of different elements 
(i.e. comers, edges and faces) of the Voronoi polyhedra 
in the unit cell,/Wc c, /We c and /WF c, respectively. This is 
carried out by translating all vertex, edge [step i(xi)] and 
face [step i(x)] coordinates, [xv, Yv, zv], [XE, Ye, Ze] and 
[XF, YF, ZF], respectively, to the source unit cell, followed 
by elimination of repeats (i.e. superimposed polyhedral 
elements). 

(k) Calculation of Voronoi polyhedral volume ratios, 
e.g. vV/v~ in a binary compound AmBn and the sum of 
the polyhedral volumes of all source atoms, which must 
be equal to the unit cell volume. 

(/) Calculation of face-based interaction indices. 

APPENDIX C 
Application of the computational procedure to 

the MgCu2 system 

C1. Geometrical attributes 

Geometrical attributes of the MgCu2 structure, which 
has been chosen as an example, are given in Table 6. 
The notation in the table has been defined in Appendix 



NOEL W. THOMAS 953 

B, with the meanings of [XF, YF, ZF] and [xE, ye, ze] 
elucidated in the main text and in Appendix A. 

C2. Topological attributes: example calculations o f  i, 
I and N i values 

The structures of NaC1 and MgCu2 may be con- 
sidered, in order to illustrate the calculation of face- 
interaction indices. The structure of NaCI belongs to 
space group 225 (Fm3m),  with Na + ions on (4a) and 
C1- ions on (4b) sites. Thus, Z = 4 ,  m = l  and n = l .  
By comparison, the MgCu2 structure belongs to space 
group 227 (Fd3m), with Mg ions in (8a) and Cu ions 
in (16d) positions (Ellner & Predel, 1979). Thus, Z= 8, 
m = 1 and n = 2. In NaC1, the Voronoi polyhedra of 
both Na ÷ and CI- ions are cubes, i.e. 816112 614], with 
vertices occupying (8c) positions in space group 225. 
In MgCu2 the Mg polyhedra are of the form 28116142 
4[6] 1215] (hexakaidecahedra), with the Cu polyhedra 
of dodecahedral form, 20112130 1215] (Table 6). 

In NaC1, all Voronoi cube faces are shared with cubes 
of the other atom type, i.e. iAA = O, iAB = 1, ibm = 1 
and i88 = 0. Thus, according to (2) and (3), IAA -~ 0, 
IA8 = 4, 18A = 4 and 188 = 0. In MgCu2, the hexagonal 
faces of the Mg polyhedra are shared with other Mg 
polyhedra, whereas all pentagonal faces are shared with 
Cu polyhedra. Consequently, iAA = 4/16 = 0.25 and ia8 = 
0.75. Six of the faces of the Cu polyhedra are shared with 
other Cu polyhedra, the other six being shared with Mg 
polyhedra. Thus, iBA = i88 = 0.5, with face-interaction 
indices IAA, IAS, 18A and 188 equal to 2, 6, 8 and 8, 
respectively. 

Numbers of interactions of different types may be 
directly inferred from (5), (6) and (7). Thus, in NaCI: 

]~A "- IAAFA/2 : O, I~B = IABFA = IBAFB = 24, N/88 = 
188F8/2 = 0; in the MgCu2 structure:  /~AA = IAAFA]2 = 
2 × 16/2 = 16, /~A8 = IAsFA = 6 × 16 = 18AF8 = 8 × 
12 - 96, M88 = 188F8/2 = 8 × 12/2 = 48. These numbers 
are in agreement with the [XF, YF, ZF] data in Table 6. 
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